Perturbation bounds for triangular and full rank factorizations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Bounds for Hyperbolic Matrix Factorizations

Several matrix factorizations depend on orthogonal factors, matrices that preserve the Euclidean scalar product. Some of these factorizations can be extended and generalized to (J, J̃)-orthogonal factors, that is, matrices that satisfy H JH = J̃ , where J and J̃ are diagonal with diagonal elements ±1. The purpose of this work is to analyze the perturbation of matrix factorizations that have a (J, ...

متن کامل

Rigorous Perturbation Bounds of Some Matrix Factorizations

This article presents rigorous normwise perturbation bounds for the Cholesky, LU and QR factorizations with normwise or componentwise perturbations in the given matrix. The considered componentwise perturbations have the form of backward rounding errors for the standard factorization algorithms. The used approach is a combination of the classic and refined matrix equation approaches. Each of th...

متن کامل

RANDOMIZED ALGORITHMS FOR LOW-RANK FACTORIZATIONS: SHARP PERFORMANCE BOUNDS By

The development of randomized algorithms for numerical linear algebra, e.g. for computing approximate QR and SVD factorizations, has recently become an intense area of research. This paper studies one of the most frequently discussed algorithms in the literature for dimensionality reduction—specifically for approximating an input matrix with a low-rank element. We introduce a novel and rather i...

متن کامل

High Resolution Methods Based On Rank Revealing Triangular Factorizations

In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation ...

متن کامل

Customizable triangular factorizations of matrices

Customizable triangular factorizations of matrices find their applications in computer graphics and lossless transform coding. In this paper, we prove that any N ×N nonsingular matrix A can be factorized into 3 triangular matrices, A = PLUS, where P is a permutation matrix, L is a unit lower triangular matrix, U is an upper triangular matrix of which the diagonal entries are customizable and ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2005

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.08.008